Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Curr Opin Cell Biol ; 88: 102361, 2024 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-38648677

RESUMO

Cilia and flagella are specialized eukaryotic organelles projecting from the surface of eukaryotic cells that play a central role in various physiological processes, including cell motility, sensory perception, and signal transduction. At the base of these structures lies the ciliary transition zone, a pivotal region that functions as a gatekeeper and communication hub for ciliary activities. Despite its crucial role, the intricacies of its architecture remain poorly understood, especially given the variations in its organization across different cell types and species. In this review, we explore the molecular architecture of the ciliary transition zone, with a particular focus on recent findings obtained using cryotomography and super-resolution imaging techniques.

2.
bioRxiv ; 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38617270

RESUMO

Centrosomes have critical roles in microtubule organization and in cell signaling.1-8 However, the mechanisms that regulate centrosome function are not fully defined, and thus how defects in centrosomal regulation contribute to disease is incompletely understood. From functional genomic analyses, we find here that PPP2R3C, a PP2A phosphatase subunit, is a distal centriole protein and functional partner of centriolar proteins CEP350 and FOP. We further show that a key function of PPP2R3C is to counteract the kinase activity of MAP3K1. In support of this model, MAP3K1 knockout suppresses growth defects caused by PPP2R3C inactivation, and MAP3K1 and PPP2R3C have opposing effects on basal and microtubule stress-induced JNK signaling. Illustrating the importance of balanced MAP3K1 and PPP2R3C activities, acute overexpression of MAP3K1 severely inhibits centrosome function and triggers rapid centriole disintegration. Additionally, inactivating PPP2R3C mutations and activating MAP3K1 mutations both cause congenital syndromes characterized by gonadal dysgenesis.9-15 As a syndromic PPP2R3C variant is defective in centriolar localization and binding to centriolar protein FOP, we propose that imbalanced activity of this centrosomal kinase-phosphatase pair is the shared cause of these disorders. Thus, our findings reveal a new centrosomal phospho-regulatory module, shed light on disorders of gonadal development, and illustrate the power of systems genetics to identify previously unrecognized gene functions.

3.
Cell ; 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38604175

RESUMO

Centriole biogenesis, as in most organelle assemblies, involves the sequential recruitment of sub-structural elements that will support its function. To uncover this process, we correlated the spatial location of 24 centriolar proteins with structural features using expansion microscopy. A time-series reconstruction of protein distributions throughout human procentriole assembly unveiled the molecular architecture of the centriole biogenesis steps. We found that the process initiates with the formation of a naked cartwheel devoid of microtubules. Next, the bloom phase progresses with microtubule blade assembly, concomitantly with radial separation and rapid cartwheel growth. In the subsequent elongation phase, the tubulin backbone grows linearly with the recruitment of the A-C linker, followed by proteins of the inner scaffold (IS). By following six structural modules, we modeled 4D assembly of the human centriole. Collectively, this work provides a framework to investigate the spatial and temporal assembly of large macromolecules.

4.
Elife ; 122024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38441556

RESUMO

From a cohort of 167 infertile patients suffering from multiple morphological abnormalities of the flagellum (MMAF), pathogenic bi-allelic mutations were identified in the CCDC146 gene. In somatic cells, CCDC146 is located at the centrosome and at multiple microtubule-related organelles during mitotic division, suggesting that it is a microtubule-associated protein (MAP). To decipher the molecular pathogenesis of infertility associated with CCDC146 mutations, a Ccdc146 knock-out (KO) mouse line was created. KO male mice were infertile, and sperm exhibited a phenotype identical to CCDC146 mutated patients. CCDC146 expression starts during late spermiogenesis. In the spermatozoon, the protein is conserved but is not localized to centrioles, unlike in somatic cells, rather it is present in the axoneme at the level of microtubule doublets. Expansion microscopy associated with the use of the detergent sarkosyl to solubilize microtubule doublets suggests that the protein may be a microtubule inner protein (MIP). At the subcellular level, the absence of CCDC146 impacted all microtubule-based organelles such as the manchette, the head-tail coupling apparatus (HTCA), and the axoneme. Through this study, a new genetic cause of infertility and a new factor in the formation and/or structure of the sperm axoneme were characterized.


Assuntos
Anormalidades Múltiplas , Infertilidade Masculina , Animais , Humanos , Masculino , Camundongos , Centríolos , Infertilidade Masculina/genética , Camundongos Knockout , Proteínas Associadas aos Microtúbulos/genética , Sêmen
5.
EMBO Mol Med ; 16(4): 805-822, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38504136

RESUMO

For 15 years, gene therapy has been viewed as a beacon of hope for inherited retinal diseases. Many preclinical investigations have centered around vectors with maximal gene expression capabilities, yet despite efficient gene transfer, minimal physiological improvements have been observed in various ciliopathies. Retinitis pigmentosa-type 28 (RP28) is the consequence of bi-allelic null mutations in the FAM161A, an essential protein for the structure of the photoreceptor connecting cilium (CC). In its absence, cilia become disorganized, leading to outer segment collapses and vision impairment. Within the human retina, FAM161A has two isoforms: the long one with exon 4, and the short one without it. To restore CC in Fam161a-deficient mice shortly after the onset of cilium disorganization, we compared AAV vectors with varying promoter activities, doses, and human isoforms. While all vectors improved cell survival, only the combination of both isoforms using the weak FCBR1-F0.4 promoter enabled precise FAM161A expression in the CC and enhanced retinal function. Our investigation into FAM161A gene replacement for RP28 emphasizes the importance of precise therapeutic gene regulation, appropriate vector dosing, and delivery of both isoforms. This precision is pivotal for secure gene therapy involving structural proteins like FAM161A.


Assuntos
Retinite Pigmentosa , Animais , Camundongos , Humanos , Retinite Pigmentosa/genética , Retinite Pigmentosa/terapia , Retinite Pigmentosa/metabolismo , Retina/metabolismo , Éxons , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Terapia Genética , Proteínas do Olho/genética , Proteínas do Olho/química , Proteínas do Olho/metabolismo
6.
Nat Commun ; 14(1): 7893, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38036510

RESUMO

Expansion microscopy (ExM) is a highly effective technique for super-resolution fluorescence microscopy that enables imaging of biological samples beyond the diffraction limit with conventional fluorescence microscopes. Despite the development of several enhanced protocols, ExM has not yet demonstrated the ability to achieve the precision of nanoscopy techniques such as Single Molecule Localization Microscopy (SMLM). Here, to address this limitation, we have developed an iterative ultrastructure expansion microscopy (iU-ExM) approach that achieves SMLM-level resolution. With iU-ExM, it is now possible to visualize the molecular architecture of gold-standard samples, such as the eight-fold symmetry of nuclear pores or the molecular organization of the conoid in Apicomplexa. With its wide-ranging applications, from isolated organelles to cells and tissue, iU-ExM opens new super-resolution avenues for scientists studying biological structures and functions.


Assuntos
Organelas , Imagem Individual de Molécula , Microscopia de Fluorescência/métodos , Imagem Individual de Molécula/métodos
7.
J Cell Biol ; 222(12)2023 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-37934472

RESUMO

Centrioles are microtubule-based organelles responsible for forming centrosomes and cilia, which serve as microtubule-organizing, signaling, and motility centers. Biogenesis and maintenance of centrioles with proper number, size, and architecture are vital for their functions during development and physiology. While centriole number control has been well-studied, less is understood about their maintenance as stable structures with conserved size and architecture during cell division and ciliary motility. Here, we identified CCDC15 as a centriole protein that colocalizes with and interacts with the inner scaffold, a crucial centriolar subcompartment for centriole size control and integrity. Using ultrastructure expansion microscopy, we found that CCDC15 depletion affects centriole length and integrity, leading to defective cilium formation, maintenance, and response to Hedgehog signaling. Moreover, loss-of-function experiments showed CCDC15's role in recruiting both the inner scaffold protein POC1B and the distal SFI1/Centrin-2 complex to centrioles. Our findings reveal players and mechanisms of centriole architectural integrity and insights into diseases linked to centriolar defects.


Assuntos
Centríolos , Proteínas Hedgehog , Divisão Celular , Centrossomo , Cílios , Humanos
8.
Bio Protoc ; 13(17): e4792, 2023 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-37719077

RESUMO

Expansion microscopy is an innovative method that enables super-resolution imaging of biological materials using a simple confocal microscope. The principle of this method relies on the physical isotropic expansion of a biological specimen cross-linked to a swellable polymer, stained with antibodies, and imaged. Since its first development, several improved versions of expansion microscopy and adaptations for different types of samples have been produced. Here, we show the application of ultrastructure expansion microscopy (U-ExM) to investigate the 3D organization of the green algae Chlamydomonas reinhardtii cellular ultrastructure, with a particular emphasis on the different types of sample fixation that can be used, as well as compatible staining procedures including membranes. Graphical overview.

9.
Med Sci (Paris) ; 39(4): 351-358, 2023 Apr.
Artigo em Francês | MEDLINE | ID: mdl-37094268

RESUMO

Most cellular imaging techniques, such as light or electron microscopy, require that the biological sample is first fixed by chemical cross-linking agents. This necessary step is also known to damage molecular nanostructures or even sub-cellular organization. To overcome this problem, another fixation approach was invented more than 40 years ago, which consists in cryo-fixing biological samples, thus allowing to preserve their native state. However, this method has been scarcely used in light microscopy due to the complexity of its implementation. In this review, we present a recently developed super-resolution method called expansion microscopy, which, when coupled with cryo-fixation, allows to visualize at a nanometric resolution the cell architecture as close as possible to its native state.


Title: L'organisation native de la cellule révélée grâce à la cryo-microscopie à expansion. Abstract: La plupart des techniques d'imagerie cellulaire, telles que la microscopie photonique ou la microscopie électronique, nécessitent que l'échantillon biologique soit préalablement fixé par des agents chimiques, une étape qui est connue pour endommager l'organisation sub-cellulaire. Pour pallier à ce problème, la cryo-fixation, inventée il y a plus de 40 ans, consiste à vitrifier les échantillons biologiques afin de préserver leur état natif. Cette méthode n'avait cependant été que très peu utilisée en microscopie photonique. Dans cette revue, nous présentons en détail la microscopie d'expansion, une technique de super-résolution développée récemment et qui, couplée à la cryo-fixation, permet de visualiser l'architecture cellulaire au plus près de son état natif.


Assuntos
Criopreservação , Humanos , Microscopia Eletrônica , Criopreservação/métodos , Microscopia Crioeletrônica/métodos
10.
JCI Insight ; 8(10)2023 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-37071472

RESUMO

Leber congenital amaurosis (LCA) is a group of inherited retinal diseases characterized by early-onset, rapid loss of photoreceptor cells. Despite the discovery of a growing number of genes associated with this disease, the molecular mechanisms of photoreceptor cell degeneration of most LCA subtypes remain poorly understood. Here, using retina-specific affinity proteomics combined with ultrastructure expansion microscopy, we reveal the structural and molecular defects underlying LCA type 5 (LCA5) with nanoscale resolution. We show that LCA5-encoded lebercilin, together with retinitis pigmentosa 1 protein (RP1) and the intraflagellar transport (IFT) proteins IFT81 and IFT88, localized at the bulge region of the photoreceptor outer segment (OS), a region crucial for OS membrane disc formation. Next, we demonstrate that mutant mice deficient in lebercilin exhibited early axonemal defects at the bulge region and the distal OS, accompanied by reduced levels of RP1 and IFT proteins, affecting membrane disc formation and presumably leading to photoreceptor death. Finally, adeno-associated virus-based LCA5 gene augmentation partially restored the bulge region, preserved OS axoneme structure and membrane disc formation, and resulted in photoreceptor cell survival. Our approach thus provides a next level of assessment of retinal (gene) therapy efficacy at the molecular level.


Assuntos
Amaurose Congênita de Leber , Animais , Camundongos , Amaurose Congênita de Leber/genética , Amaurose Congênita de Leber/terapia , Amaurose Congênita de Leber/metabolismo , Axonema/genética , Axonema/metabolismo , Proteínas do Olho/genética , Proteínas do Olho/metabolismo , Células Fotorreceptoras/metabolismo
11.
Semin Cell Dev Biol ; 137: 16-25, 2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-34896019

RESUMO

Centrioles are microtubule-based cell organelles present in most eukaryotes. They participate in the control of cell division as part of the centrosome, the major microtubule-organizing center of the cell, and are also essential for the formation of primary and motile cilia. During centriole assembly as well as across its lifetime, centriolar tubulin display marks defined by post-translational modifications (PTMs), such as glutamylation or acetylation. To date, the functions of these PTMs at centrioles are not well understood, although pioneering experiments suggest a role in the stability of this organelle. Here, we review the current knowledge regarding PTMs at centrioles with a particular focus on a possible link between these modifications and centriole's architecture, and propose possible hypothesis regarding centriolar tubulin PTMs's function.


Assuntos
Centríolos , Tubulina (Proteína) , Tubulina (Proteína)/genética , Centro Organizador dos Microtúbulos , Microtúbulos , Cílios
12.
J Cell Sci ; 135(24)2022 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-36524422

RESUMO

The budding and fission yeasts Saccharomyces cerevisiae and Schizosaccharomyces pombe have served as invaluable model organisms to study conserved fundamental cellular processes. Although super-resolution microscopy has in recent years paved the way to a better understanding of the spatial organization of molecules in cells, its wide use in yeasts has remained limited due to the specific know-how and instrumentation required, contrasted with the relative ease of endogenous tagging and live-cell fluorescence microscopy. To facilitate super-resolution microscopy in yeasts, we have extended the ultrastructure expansion microscopy (U-ExM) method to both S. cerevisiae and S. pombe, enabling a 4-fold isotropic expansion. We demonstrate that U-ExM allows imaging of the microtubule cytoskeleton and its associated spindle pole body, notably unveiling the Sfi1p-Cdc31p spatial organization on the appendage bridge structure. In S. pombe, we validate the method by monitoring the homeostatic regulation of nuclear pore complex number through the cell cycle. Combined with NHS-ester pan-labelling, which provides a global cellular context, U-ExM reveals the subcellular organization of these two yeast models and provides a powerful new method to augment the already extensive yeast toolbox. This article has an associated First Person interview with Kerstin Hinterndorfer and Felix Mikus, two of the joint first authors of the paper.


Assuntos
Proteínas de Saccharomyces cerevisiae , Schizosaccharomyces , Humanos , Schizosaccharomyces/metabolismo , Saccharomyces cerevisiae/metabolismo , Microscopia , Proteínas de Saccharomyces cerevisiae/metabolismo , Corpos Polares do Fuso/metabolismo
13.
EMBO J ; 41(21): e112107, 2022 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-36125182

RESUMO

Over the course of evolution, the centrosome function has been conserved in most eukaryotes, but its core architecture has evolved differently in some clades, with the presence of centrioles in humans and a spindle pole body (SPB) in yeast. Similarly, the composition of these two core elements has diverged, with the exception of Centrin and SFI1, which form a complex in yeast to initiate SPB duplication. However, it remains unclear whether this complex exists at centrioles and whether its function has been conserved. Here, using expansion microscopy, we demonstrate that human SFI1 is a centriolar protein that associates with a pool of Centrin at the distal end of the centriole. We also find that both proteins are recruited early during procentriole assembly and that depletion of SFI1 results in the loss of the distal pool of Centrin, without altering centriole duplication. Instead, we show that SFI1/Centrin complex is essential for centriolar architecture, CEP164 distribution, and CP110 removal during ciliogenesis. Together, our work reveals a conserved SFI1/Centrin module displaying divergent functions between mammals and yeast.


Assuntos
Proteínas de Ligação ao Cálcio , Proteínas de Ciclo Celular , Centríolos , Animais , Humanos , Proteínas de Ciclo Celular/metabolismo , Centríolos/metabolismo , Proteínas Repressoras/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Corpos Polares do Fuso/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo
14.
PLoS Biol ; 20(9): e3001782, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36070319

RESUMO

In metazoa, cilia assembly is a cellular process that starts with centriole to basal body maturation, migration to the cell surface, and docking to the plasma membrane. Basal body docking involves the interaction of both the distal end of the basal body and the transition fibers/distal appendages, with the plasma membrane. Mutations in numerous genes involved in basal body docking and transition zone assembly are associated with the most severe ciliopathies, highlighting the importance of these events in cilium biogenesis. In this context, the ciliate Paramecium has been widely used as a model system to study basal body and cilia assembly. However, despite the evolutionary conservation of cilia assembly events across phyla, whether the same molecular players are functionally conserved, is not fully known. Here, we demonstrated that CEP90, FOPNL, and OFD1 are evolutionary conserved proteins crucial for ciliogenesis. Using ultrastructure expansion microscopy, we unveiled that these proteins localize at the distal end of both centrioles/basal bodies in Paramecium and mammalian cells. Moreover, we found that these proteins are recruited early during centriole duplication on the external surface of the procentriole. Functional analysis performed both in Paramecium and mammalian cells demonstrate the requirement of these proteins for distal appendage assembly and basal body docking. Finally, we show that mammalian centrioles require another component, Moonraker (MNR), to recruit OFD1, FOPNL, and CEP90, which will then recruit the distal appendage proteins CEP83, CEP89, and CEP164. Altogether, we propose that this OFD1, FOPNL, and CEP90 functional module is required to determine in mammalian cells the future position of distal appendage proteins.


Assuntos
Centríolos/metabolismo , Cílios/ultraestrutura , Paramecium/metabolismo , Animais , Membrana Celular , Centríolos/química , Cílios/metabolismo , Mamíferos , Paramecium/química , Paramecium/citologia
15.
Science ; 377(6605): 543-548, 2022 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-35901159

RESUMO

The cilium is an antenna-like organelle that performs numerous cellular functions, including motility, sensing, and signaling. The base of the cilium contains a selective barrier that regulates the entry of large intraflagellar transport (IFT) trains, which carry cargo proteins required for ciliary assembly and maintenance. However, the native architecture of the ciliary base and the process of IFT train assembly remain unresolved. In this work, we used in situ cryo-electron tomography to reveal native structures of the transition zone region and assembling IFT trains at the ciliary base in Chlamydomonas. We combined this direct cellular visualization with ultrastructure expansion microscopy to describe the front-to-back stepwise assembly of IFT trains: IFT-B forms the backbone, onto which bind IFT-A, dynein-1b, and finally kinesin-2 before entry into the cilium.


Assuntos
Chlamydomonas , Cílios , Flagelos , Chlamydomonas/metabolismo , Cílios/metabolismo , Microscopia Crioeletrônica/métodos , Dineínas/metabolismo , Tomografia com Microscopia Eletrônica/métodos , Flagelos/metabolismo , Flagelos/ultraestrutura , Cinesinas/metabolismo , Transporte Proteico , Transdução de Sinais
16.
PLoS Biol ; 20(6): e3001649, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35709082

RESUMO

Inherited retinal degeneration due to loss of photoreceptor cells is a leading cause of human blindness. These cells possess a photosensitive outer segment linked to the cell body through the connecting cilium (CC). While structural defects of the CC have been associated with retinal degeneration, its nanoscale molecular composition, assembly, and function are barely known. Here, using expansion microscopy and electron microscopy, we reveal the molecular architecture of the CC and demonstrate that microtubules are linked together by a CC inner scaffold containing POC5, CENTRIN, and FAM161A. Dissecting CC inner scaffold assembly during photoreceptor development in mouse revealed that it acts as a structural zipper, progressively bridging microtubule doublets and straightening the CC. Furthermore, we show that Fam161a disruption in mouse leads to specific CC inner scaffold loss and triggers microtubule doublet spreading, prior to outer segment collapse and photoreceptor degeneration, suggesting a molecular mechanism for a subtype of retinitis pigmentosa.


Assuntos
Degeneração Retiniana , Retinite Pigmentosa , Animais , Cílios , Proteínas do Olho , Camundongos , Microtúbulos
17.
Nat Methods ; 19(2): 216-222, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35027766

RESUMO

Cryofixation has proven to be the gold standard for efficient preservation of native cell ultrastructure compared to chemical fixation, but this approach is not widely used in fluorescence microscopy owing to implementation challenges. Here, we develop Cryo-ExM, a method that preserves native cellular organization by coupling cryofixation with expansion microscopy. This method bypasses artifacts associated with chemical fixation and its simplicity will contribute to its widespread use in super-resolution microscopy.


Assuntos
Criopreservação/métodos , Microscopia de Fluorescência/métodos , Animais , Linhagem Celular , Chlamydomonas reinhardtii/citologia , Criopreservação/instrumentação , Citoesqueleto , Epitopos , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Humanos , Camundongos
19.
PLoS Biol ; 19(3): e3001020, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33705377

RESUMO

Malaria is caused by unicellular Plasmodium parasites. Plasmodium relies on diverse microtubule cytoskeletal structures for its reproduction, multiplication, and dissemination. Due to the small size of this parasite, its cytoskeleton has been primarily observable by electron microscopy (EM). Here, we demonstrate that the nanoscale cytoskeleton organisation is within reach using ultrastructure expansion microscopy (U-ExM). In developing microgametocytes, U-ExM allows monitoring the dynamic assembly of axonemes and concomitant tubulin polyglutamylation in whole cells. In the invasive merozoite and ookinete forms, U-ExM unveils the diversity across Plasmodium stages and species of the subpellicular microtubule arrays that confer cell rigidity. In ookinetes, we additionally identify an apical tubulin ring (ATR) that colocalises with markers of the conoid in related apicomplexan parasites. This tubulin-containing structure was presumed to be lost in Plasmodium despite its crucial role in motility and invasion in other apicomplexans. Here, U-ExM reveals that a divergent and considerably reduced form of the conoid is actually conserved in Plasmodium species.


Assuntos
Citoesqueleto/ultraestrutura , Microtúbulos/ultraestrutura , Toxoplasma/ultraestrutura , Animais , Citoesqueleto/metabolismo , Malária/metabolismo , Malária/parasitologia , Microscopia Eletrônica/métodos , Microtúbulos/metabolismo , Parasitos , Plasmodium/metabolismo , Plasmodium/patogenicidade , Plasmodium/ultraestrutura , Toxoplasma/metabolismo , Toxoplasma/patogenicidade , Tubulina (Proteína)
20.
J Cell Sci ; 134(5)2021 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-33589495

RESUMO

Proper mitochondrial genome inheritance is important for eukaryotic cell survival. Trypanosoma brucei, a protozoan parasite, contains a singular mitochondrial genome, the kinetoplast (k)DNA. The kDNA is anchored to the basal body via the tripartite attachment complex (TAC) to ensure proper segregation. Several components of the TAC have been described; however, the connection of the TAC to the kDNA remains elusive. Here, we characterize the TAC-associated protein TAP110. We find that both depletion and overexpression of TAP110 leads to a delay in the separation of the replicated kDNA networks. Proteome analysis after TAP110 overexpression identified several kDNA-associated proteins that changed in abundance, including a TEX-like protein that dually localizes to the nucleus and the kDNA, potentially linking replication and segregation in the two compartments. The assembly of TAP110 into the TAC region seems to require the TAC but not the kDNA itself; however, once TAP110 has been assembled, it also interacts with the kDNA. Finally, we use ultrastructure expansion microscopy in trypanosomes for the first time, and reveal the precise position of TAP110 between TAC102 and the kDNA, showcasing the potential of this approach.This article has an associated First Person interview with the first author of the paper.


Assuntos
Genoma Mitocondrial , Trypanosoma brucei brucei , DNA de Cinetoplasto/genética , Genoma Mitocondrial/genética , Mitocôndrias , Proteínas de Protozoários/genética , Trypanosoma brucei brucei/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...